

2x2 Chicago Meeting

February 20, 2024 Angela White and Elise Hinkle

Agenda

- 1. Paper Update
- 2. General Analysis Update
- 3. n-LAr XS Systematics Update

General 2x2 Analysis Outlook

Current "First Analysis" topics:

- 1.) <u>Charged track multiplicity</u>
- 2.) $\overline{v_{\mu}}$ -Ar CC mesonless cross section
- 3.) <u>n-Ar cross section/neutron production in $\overline{v_{\mu}}$ -Ar interactions</u>

Other analyses currently in development:

- 1.) <u>CC π^0 production in *v*-Ar interactions</u>
- 2.) <u>Strangeness production $(K^{\pm} + X, \Lambda + X)$ in *v*-Ar interactions</u>

Previous proposals and studies <u>presented by</u> <u>Callum Wilkinson</u> at January 2023 ND Prototypes Analysis Workshop

<u>C. Wilkinson</u> What measurements are viable?

- Downstream muons (E_µ >1.2 GeV) can only be tagged
 - No momentum measurements
 - STV variables not accessible
 - E_v proxies inaccessible shouldn't try to measure those anyway...

Shower containment poor in 2x2 only – but can be tagged

Containment

4000

4000

5000

3000

Muon Tag

Momentum [MeV/c]

Momentum [MeV/c]

2000

1000

1.0

0.5

0.8

0.6

Previous proposals and studies <u>presented by</u> <u>Callum Wilkinson</u> at January 2023 ND Prototypes Analysis Workshop

<u>C. Wilkinson</u> What measurements are viable?

From Stephen's studies:

	0 π [±]	1 π [±]	2 π [±]	3+ π [±]
0 π ⁰	2.01e+05	1.64e+05	9.31e+04	6.65e+04
1 n ⁰	8.22e+04	9.63e+04	5.42e+04	5.36e+04
2 π ⁰	3.11e+04	2.88e+04	2.3e+04	2.49e+04
$3 + \pi^0$	1.05e+04	1.32e+04	9.72e+03	1.19e+04

Total Number of CC Events Expected Per Year

Number of 2x2 Only CC Contained Events Expected Per Year

. F	0 π [±]	1 n [±]	2 π [±]	3+ n [±]
0 π ⁰	1.4e+05	4.81e+04	1.4e+04	4.41e+03
1 n ⁰	7.30e+03	3.32e+03	1.27e+03	5.21e+02
2 π ⁰	3.42e+02	2.02e+02	1.18e+02	6.72e+01
$3 + \pi^0$	5.6e+00	1.68e+01	5.6e+00	0.e+00

Number of CC Contained Events Expected Per Year

		0 π [±]	1 n±	2 π [±]	3+ π [±]
024	0 π ⁰	1.53e+05	8.04e+04	3.26e+04	1.56e+04
X	1 nº	2.83e+04	2.8e+04	1.09e+04	7.59e+03
172	2 π ⁰	6.58e+03	4.96e+03	3.04e+03	2.25e+03
	3+ π ⁰	1.32e+03	1.22e+03	7.39e+02	5.94e+02

Mostly escape the 2x2

8

Previous proposals and studies <u>presented by</u> <u>Callum Wilkinson</u> at January 2023 ND Prototypes Analysis Workshop

C. Wilkinson

Scientific interestTM

My potentially biased ordered list of topics

- CC $2\pi^+$: unmeasured since 80s, in the "transition region"
- NC $1\pi^+$: muon background at FD
- CC $1\pi^+$: huge fraction of DUNE events, unknown at high-W
- NC π^0 measurements: electron background at FD
- Kaon production: some interest as an unusual channel
- CC π^0 measurements: π^0/π^{\pm} ratio give FSI info
- NC 2π[±]: never measured, will break RES model
 - RHC CC0 π : SBND may not measure this, muon tag only
- NC-elastic scattering: some ability to measure "∆s"
- FHC CC0π: SBND will measure this extremely well

9

Previous proposals and studies <u>presented by</u> <u>Callum Wilkinson</u> at January 2023 ND Prototypes Analysis Workshop

C. Wilkinson

Scientific interestTM

My potentially biased ordered list of topics

- CC $2\pi^*$: unmeasured since 80s, in the "transition region"
- NC $1\pi^+$: muon background at FD
- CC $1\pi^+$: huge fraction of DUNE events, unknown at high-W
- NC π^0 measurements: electron background at FD
- Kaon production: some interest as an unusual channel
- CC π⁰ measurements: π⁰/π⁺ ratio give FSI info
- NC 2π[±]: never measured, will break RES model

• RHC CC0π: SBND may not measure this, muon tag only

- NC-elastic scattering: some ability to measure "∆s"
- FHC CC0π: SBND will measure this extremely well

Additional interesting options from Callum's list:

- 1.) CC $1\pi^+$, CC $2\pi^+$
 - Main difficulties: particle PID, containment (?), TPC-TPC matching
- 2.) NC $1\pi^+$, NC $2\pi^+$
 - Main difficulties: particle PID, containment (?), TPC-TPC matching
- 3.) NC π^{0}
 - Main difficulties: shower containment and reconstruction, statistics
- 4.) Electron neutrino cross sections
 - Main difficulties: shower containment and reconstruction, statistics
- 5.) NC-elastic scattering
 - Main difficulties: proton detection threshold

Can also extend analysis to differential cross sections:

- **Pros:** developing analysis techniques; potentially contribute to improving cross section models for neutrino generators
- **Cons:** muon momentum difficult and/or impossible to measure; can't currently make FSI dials in generators using kinematic variables

Possible differential variables include:

- Proton (pion) multiplicity
- Muon angle w.r.t. beam
- Leading proton (pion) momentum
- Angle between leading proton (pion) and sub-leading proton (pion)

n-LAr Inelastic XS

Preliminary Analysis: neutron KE spectrum in LAr

- Just counting/reconstruction (like a Michel e- spectrum)
- Relies on:
 - Neutron time of flight
 - Distance between neutrino vertex and neutron inelastic scatter.
- Systematics on next slide

Next Step: XS

- "quantify the flux by measuring the attenuation of neutron interactions as a function of distance from the neutrino vertex"
- Major Systematics:
 - 1.vertex resolution
 2.p+ blip identification

Final XS given as flux-averaged energy in time-of-flight bins

n-LAr Inelastic KE Spectrum Systematics

Expected leading systematics:

- 1. **Neutron elastic scatters:** The primary neutron scatters before interacting and producing a proton.
- 2. **Hadron interactions:** A charged pion scatters to produce a neutron which in turn produces a proton which would fake our signal
- 3. **Near-synchronous:** Neutrino interactions occurring nearly simultaneously within the fiducial volume can lead to signal overlap, causing topology-based signal distortion.
- 4. **Dirt activity:** Proton is produced through outside particle and you have a true neutrino interaction inside the fiducial volume
- 5. Time drift between modules: Can calibrate out, but need O(ns) measurement

n-LAr Inelastic XS

- Quantify the impact of the gaps between modules on this analysis
- And the steel in the detector frame(?) or is it mostly G10?

To Do:

Influence on dead regions on analyses Are there any topologies that are particularly good with native 3D reco

2x2 Paper Update

Link to Overleaf Draft:

https://www.overleaf.com/8458358216drvhjgctvqpr#7b24bd

Status:

- General Structure Forming

To Do:

- email Callum and James at LBNL, plan for **2 complimentary papers**
 - 1st is 2x2 first events: simple, released immediately (we lead)
 - 2nd is detailed technical paper with more complex analysis (they lead)

Previous proposals and studies <u>presented by</u> <u>Callum Wilkinson</u> at January 2023 ND

Prototypes Analysis Workshop

<u>C. Wilkinson</u>

Rare channels

- My Scientific interest[™] ranking was entirely biased towards oscillation physics... but that's not the full story!
- Also potential to measure rare particle production, which may be interesting as a specific background for a BSM search, or as a potential calibration sample
- For reference, MicroBooNE's recent paper on hyperon production (with 5 events), arXiv:2212.07888
- According to GENIE (with NuMI ME and ⁴⁰Ar):
 - 2.9% contain a neutral kaon
 - 3.9% contain a charged kaon
 - 4.0% contain a strange baryon
 - 0.6% contain a charmed meson
 - 0.4% contain a charmed baryon
- Lots of challenges, but could be worth further investigation!

Previous proposals and studies <u>presented by</u> <u>Callum Wilkinson</u> at

January 2023 ND Prototypes Analysis Workshop

<u>C. Wilkinson</u>

Rare channels

- My Scientific interest[™] ranking was entirely biased towards oscillation physics... but that's not the full story!
- Also potential to measure rare particle production, which may be interesting as a specific background for a BSM search, or as a potential calibration sample
- For reference, MicroBooNE's recent paper on hyperon production (with 5 events), arXiv:2212.07888
- According to GENIE (with NuMI ME and ⁴⁰Ar):
 - 2.9% contain a neutral kaon
 - 3.9% contain a charged kaon
 - 4.0% contain a strange baryon
 - 0.6% contain a charmed meson
 - 0.4% contain a charmed baryon
- Lots of challenges, but could be worth further investigation!

C. Wilkinson

Previous proposals and studies <u>presented by</u> <u>Callum Wilkinson</u> at January 2023 ND Prototypes Analysis Workshop

2x2 & MINERvA

- As has been discussed before, the 2x2 samples the same NuMI ME flux as MINERvA did previously... perhaps an opportunity?
- Correlated measurements between ⁴⁰Ar and C₈H₈ could be very useful for DUNE: SAND, using existing measurements
- Some challenges:
 - · Getting correlated throws of the flux might be difficult
 - · Utility may be somewhat analysis technique dependent
 - MINERvA and 2x2 acceptance is rather different...
- But, worth thinking about as we put more thought into analyses

C. Wilkinson

Previous proposals and studies <u>presented by</u> <u>Callum Wilkinson</u> at January 2023 ND Prototypes Analysis Workshop

2x2 & MINERvA

- As has been discussed before, the 2x2 samples the same NuMI ME flux as MINERvA did previously... perhaps an opportunity?
- Correlated measurements between ⁴⁰Ar and C₈H₈ could be very useful for DUNE: SAND, using existing measurements
- Some challenges:
 - · Getting correlated throws of the flux might be difficult
 - · Utility may be somewhat analysis technique dependent
 - MINERvA and 2x2 acceptance is rather different...
- But, worth thinking about as we put more thought into analyses

Additional thoughts: we're not on MINERvA, which makes pursuing this analysis more difficult and probably not worth it