

2x2 Chicago Meeting

April 2, 2024 Angela White and Elise Hinkle

2x2 Paper Update

Link to Overleaf Draft:

https://www.overleaf.com/6419191385gzxrjygksbcb#1adc5e

- Introduction, Hardware, and Commissioning are drafted
- Currently communicating with cosmic + rock muon simulation folks for Backgrounds section
- Updated beam flux plots currently in production
- Need better event displays-Elise has begun pushing this in working groups

Any and all comments welcome in the draft above!

Other Event Display

- Made stop-gap event display for placeholder in paper draft
- Used it in presentation in analysis meeting to advocate for more event displays \rightarrow hopefully, there will be more/better event displays coming

2x2 LRS Warm Commissioning

Does the Light Output Make Sense?

Observe: No light signal at tick 200–just dark counts throughout

Test 1: Over 1005 Events, Avg. Maximum by Channel

Observe:

Only concerned with global maximum

Single p.e. dark count: ~ 300 ADC counts

Test 1: Over 1005 Events, Avg. Maximum by Channel

Observe: Max. dark count is ~ 1 p.e. In Mod-0, and ~ 3 p.e. in Mods 1, 2, &3

Test 2: Over 1005 Events, Avg. Amplitude by Channel

Observe:

Only concerned with global average

Average this value for each of 384 SiPM channels over 1005 events...

Test 2: Over 1005 Events, Avg. Amplitude by Channel

Observe: Not very different. ACLs, in general, are noisier. Mod 3 ACLs are non-responsive.

Test 3: Over 1005 Events, Avg. Ratio of Noise Amp Across Wvfm

Observe:

Take ratio: Avg [800:1000] / Avg [0:200]

Test 2: Over 1005 Events, Avg. Amplitude by Channel

Observe: On average, there are as many dark counts early in the waveform as there are late

Test 4: Over 1005 Events, Avg. Dark Count Rate

Observe:

Most dark counts appear to be single p.e.

Test 2: Over 1005 Events, Avg. Amplitude by Channel

Observe: On average, 30 dark counts / 16 µs (1.9 MHz), lower for Mod-0

Light Noise FFTs:

Main Takeaway: Dark Counts in warm drown out electronics noise

• See: 10 MHz peak

Light Noise FFTs:

Main Takeaway: Dark Counts in warm drown out electronics noise

• See: 10 MHz peak

Updates on ML Reco Benchmarking

- Gave additional presentation at ND Prototypes Analysis Meeting March 21, 2024
- Some updates from previously shown studies + additional suggestions

Current Work – Full Reco Benchmarking

- Still want to look at calibration-file-level comparisons of data/MC using Bern Module data and simulation (see my <u>presentation last week</u> for update on Bern module cosmics simulation status)
- Also want to investigate full proton reconstruction using CAFs by comparing reco and true particle kinematics (see <u>other presentation last week</u> for first results)
- As CAFs currently only contain **ML Reco** information, this is the reconstruction I'm evaluating

Sample Details

- Used MiniRun4.5 Beta 3 CAFs (200 files)
- As ML Reco has some known PID issues, I look at all **reconstructed** charged track-like particles and also just **reconstructed** protons in comparison to **best match true particles**
- Cut on ML Reco "Overlap" variable such that require reco/true match to have >=0.5 overlap
- No throughgoing tracks
- No tracks with reco start or end points at the upstream edge of detector (within 1.0 cm)
- •Overall, 19594 charged tracks and 5726 protons

Charged Track and Proton Length

THE UNIVERSITY OF CHICAGO

DEEP UNDERGROUND NEUTRINO EXPERIMENT

• More short true tracks

 Many more than expected reco/true matches with >10 cm track length differences

E. Hinkle | ND Prototypes Analysis Meeting | March 21, 2024

2

Charged Track and Proton Length Comparison

 True match tracks more likely to be shorter than reconstructed tracks vs. longer

THE UNIVERSITY OF CHICAGO

Charged Track Start Position

True vs. ML Reco Track Start Position for Reconstructed Charged Track Sample

- Significant differences in x-coordinate distribution
- Large spikes at edges for ML Reco in y, z

Proton Start Position

True vs. ML Reco Track Start Position for Reconstructed Proton Sample

- Significant differences in x-coordinate distribution
- Large spikes at edges for ML Reco in y, z

Charged Track End Position

True vs. ML Reco Track End Position for Reconstructed Charged Track Sample

• Significant differences in x-coordinate distribution

Proton End Position

True vs. ML Reco Track End Position for Reconstructed Proton Sample

• Significant differences in x-coordinate distribution

(Absolute value of the cosine of the)

Charged Track Angle w.r.t Beam

- Binned by reconstructed track length in 10 cm bins
- •Note: log scale on y-axis
- For shorter tracks, clear difference in true vs. reco distributions

CHICAGO

E. Hinkle | ND Prototypes Analysis Meeting | March 21, 2024

NEUTRINO EXPERIMENT

- Binned by reconstructed track length in 10 cm bins
- Note: normal scale on y-axis
- For all tracks, clear difference in true vs. reco distributions

CHICAGO

Difference in Abs. Cos. of Pixel Plane Angle

CHICAGO

•Line at +0.75 difference
in filtered here and looked at true vs. reco tracks above this difference threshold

Ex: Charged Track #1

 Best alignment on "pixel plane" view (bottom left)

CHICAGO

E. Hinkle | ND Prototypes Analysis Meeting | March 21, 2024

33

DEEP UNDERGROUND

NEUTRINO EXPERIMENT

"Full Event" #1

- Reconstructed tracks shown:
 - All reco tracks from same file, spill, and reco interaction as reco track in last slide
- True tracks shown:
 - All reco tracks from same file, spill, and true interaction as true track in last slide

E. Hinkle | ND Prototypes Analysis Meeting | March 21, 2024

NEUTRINO EXPERIMENT

Ex: Charged Track #2

 Best alignment on "pixel plane" view (bottom left)

DEEP UNDERGROUND

NEUTRINO EXPERIMENT

35

CHICAGO

"Full Event" #2

Reconstructed tracks shown:

- All reco tracks from same file, spill, and reco interaction as reco track in last slide
- True tracks shown:
 - All reco tracks from same file, spill, and true interaction as true track in last slide

E. Hinkle | ND Prototypes Analysis Meeting | March 21, 2024

NEUTRINO EXPERIMENT

Ex: Charged Track #3

- Best alignment on "pixel plane" view (bottom left)
- Note that true match end and ML Reco start match better than true/reco start or true/reco end

THE UNIVERSITY OF CHICAGO

37

NEUTRINO EXPERIMENT

"Full Event" #3

Reconstructed tracks shown:

 All reco tracks from same file, spill, and reco interaction as reco track in last slide

• True tracks shown:

• All reco tracks from same file, spill, and true interaction as true track in last slide

NEUTRINO EXPERIMENT

Ex: Charged Track #4

 Best alignment on "pixel plane" view (bottom left)

CHICAGO

39

DEEP UNDERGROUND

NEUTRINO EXPERIMENT

"Full Event" #4

• **Reconstructed** tracks shown:

- All reco tracks from same file, spill, and reco interaction as reco track in last slide
- True tracks shown:
 - All reco tracks from same file, spill, and true interaction as true track in last slide

Track Multiplicity at Vertex

• First bin may be cases where true particle match is shower-like

• In the future, will look at kinematics by true track multiplicity at vertex to get a better understanding of reconstruction fidelity in high activity environments

CHICAGO

NEUTRINO EXPERIMENT

Future Studies

- Break down plots I showed in terms of different variables (e.g. by charged track multiplicity at the vertex, by start/end position, etc.) to identify specific failure modes
- Similar studies w/ reflowed Bern data/new cosmics samples run through ML Reco
- Look at proton thresholds using a sample of true protons
- Create **samples of TRUE protons and charged tracks** and make plots similar to what I've shown here
- Make efficiency vs. purity plots with reco protons, charged tracks
- Make plots such that they can be **easily reproduced** for new iterations of ML Reco (i.e. when it is retrained)
- Make more informative full event display to see all activity vs. single set of matched tracks

CHICAGO

Additional Comments from Others

- Look at angles based on Cartesian coordinates
- Look at differences true vs. reco angles and start/end positions
- Look at events for particular failure modes in official ML Reco event display
- Look at events with different "overlap" amounts true vs. reco